

Franciscus Colijn and Wilhelm Petersen HZG

History of using Ships of Opportunity (SoOs) for Ocean Monitoring

- 1853 Brussels Conference: systemizing reporting of marine weather and sea conditions initiated by marine meteorology.
- Use of S-T thermosalinographs on the Hurtigruten in Norway, since 1930
- Continuous Plankton Recorder (CPR) started in 1931
- since 1993 first application of FerryBoxes for monitoring in the Baltic Sea (Alg@line, SYKE (former Finnish Marine Institute)
- EU Project "FerryBox" 2003-2005 (after 2 refusals)
 → European FerryBox consortium
- Continuous operation by most of the partners since that time (individual funding mostly by research money)
- Setup of new lines
- Commercially FerryBox systems on the market
- EuroGOOS FerryBox TaskTeam (2015)

map with FB routes

FerryBoxes in Europe within the 'ROOSes"

Cruise liner "MeinSchiff3" Recent Chlorophyll-a Data from April 2015

Date range: 28.03.2015 - 28.04.2015

Modify size: - + Click and drag for panning. <SHIFT>-click and drag for zooming.

Platforms:

- FB with common sensors: salinity, temperature, oxygen, turbidity, chlorophyll fluorescence,
- FB as testsystem for new sensors: PSICAM, spectral analysis for group detection, pCO2, pH, nutrients
- FB systems in combination with new techniques (flowcytometry, biological molecular measurements, species combination

Characteristics of the FB Whitebook:

Chapter 1: Regional and global long term time series

based on FB observations

Chapter 2: FB measurements as ground truth for

satellite observations

Chapter 3: Use of FB measurements for the fishing and

aquaculture community

Chapter 4: Use of FB data by the scientific community

including the use of FB data by modelers

Chapter 5: Use of FB systems as an efficient alternative

to current monitoring strategies

Chapter 6: Link between FB operators and the shipping

industry

- Chapter 7: Development of new sensors for (coastal) oceanographic observations (innovation)
- Chapter 8: Operational and investment costs of systems including maintenance
- Chapter 9: Integration between different observational methods (HF Radar, moorings, gliders, Euro-Argo) and FB
- Chapter 10: Need for environmental data from FB systems
- Chapter 11: FerryBox data management
- Chapter 12: Role of FB data in ocean acidification and impact of (coastal) oceans for CO2 uptake from the atmosphere
- Chapter 13: Link between FB systems, other international organizations and FB governance
- Chapter 14: Participating institutes and groups with their specific expertise
- Chapter 15: Summary, conclusions and recommendations

Proposed Scheme for a Common European FerryBox Data Management

FerryBox – (Near) Real Time Quality Check

Scientific Applications

Combining satellitdata Algal products with and ship transect Chl-a fluorescence data

Combination of Chlorophyll-a data from Satellite (MERIS) and FerryBox (May 2011)

Analysis of Short-Term Events from Drift Data

Centre for Materials and Coastal Research

SSS Validation of Data Assimilation (DA) vs. MARNET Station "German Bight"

SSS Station 'German Bight' (psu)

Harmful algae bloom (HAB) in the Kattegat (eastern part of the North Sea)

Key methods

Chlorophyll *a* fluorescence Automated water sampling Microscope analysis

Harmful algal bloom detected

Fish killing flagellate *Pseudochattonella* sp. observed directly after diatom spring bloom

Pseudochattonella farcimen

Biomass of phytoplankton at the class level at station Anholt E

New Sensors for More Biogeochemical Parameters

Continuous pCO2, pH and AT Measurements by Underway Systems (e.g. FerryBoxes)

Expected Outcome:

- → Spatially and seasonally resolved sources and sinks of CO2 along a certain transect
- → Alkalinity transport from the shore into the North Sea
- → CO2 air-sea fluxes
- → ocean acidification
- → quantification of production rates
 - → comparison of productivity with estimates derived from other variables (DO, Chl-a, winter nutrient stocks....)
- → impact of phytoplankton dynamics (e.g. seasonality...)

Development of New Sensors for Underway

pH and Alkalinity (A_T)

SIA systems, spectrophotometric detection

Nutrients (PO4, NOx)

Wet chemical Analyzer SIA system, photometric detection

Absorption of Water Constituents (PSICAM)

measuring absorption spectra leads to

- more reliable quantification of chl-a and SPM
- detection of phytoplankton groups

Parameters derived from absorption spectra

Hyperspectral absorption data provide various information:

Conclusions

FerryBox systems for monitoring water quality parameter:

- deliver cost-effective continuous time-series of physical and biogeochemical observations with high resolution in space and time →detection of short-term events and long-term changes
- Data can be used to improve the quality of numerical models
- FerryBox are an ideal platform for newly developed biogeochemical sensors (space, power, accessibility...)
- Long-term biogeochemical data fill serious gaps of biogeochemical knowledge and will improve the understanding of different biogeochemical processes (e.g. occurrence of algae blooms, HABs, ocean acidification....) and
- helps to further develop ecosystem models

However, most of FerryBox activities still missing sustainable funding!!

We need:

FB systems as part of a European observation system, EOOS

Funding and governance comparable with EU ARGO (EMODNET)

Initial investment 2 Mill €, annual maintenance 1 Mill €, national contributions through regular marine monitoring programmes

Establishment of a European data portal for FB data